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Abstract. Modern dense visual SLAM systems pro-
duce high-fidelity geometric models, yet the qual-
ity of their textures lags behind. In part, the prob-
lem pertains to naive handling of colors. The RGB
triplets from images are averaged straight into the
model, ignoring nonlinearity of the image color
space, vignetting effects, and variations of exposure
time between different frames.

In this paper we propose extensions to a surfel-
based dense SLAM framework that enable more
faithful capture of scene appearance. We adjust the
representation to increase the dynamic range of col-
ors, radiometrically rectify images to work in linear
color space, and explicitly handle saturated pixels.
Differently to the prior work in HDR-aware SLAM,
we advocate turning off the automatic exposure func-
tion of the camera and incorporate a custom con-
troller in the SLAM loop. We demonstrate improve-
ments in texture quality compared to LDR systems,
and show that self-directed exposure time control
yields more complete and consistent color models.

1. Introduction

Visual SLAM (Simultaneous Localization and
Mapping) has been a major research topic in robotics
for decades [2]. The advent of cheap RGB-D cam-
eras fueled interest in the family of methods that per-
form dense reconstruction of the underlying geom-
etry. Newcombe et al. [14] introduced the idea of
tracking a camera against the growing surface model
using direct geometric alignment of all input data. In
their system the map was represented by a flat voxel
grid of limited spatial resolution and size. Follow-
up works removed this restriction [3,15], added loop
closure detection [19], and online global optimiza-
tion of the pose graph [4]. Other map represen-
tations, such as surfel-based [8, 20] and keyframe-

Figure 1. High Dynamic Range Imaging. The scene has
light and dark objects; it is not possible to properly expose
both simultaneously. Top row: camera images taken with
small and large shutter times. Bottom: composite high
dynamic range image (tonemapped).

based [13], were explored as well.
Traditionally, the focus has been on obtaining

globally consistent, high-fidelity geometric recon-
structions. The color appearance is often neglected;
dense SLAM systems either ignore input color data,
or fix the sensor exposure time and adopt a simplistic
method of averaging image pixel intensities.

There are several problems associated with the
latter approach. Firstly, it implies that image pixel
intensities directly reflect the apparent color of the
scene points. This assumption does not hold due
to nonlinear transformations in the process of image



formation. In our recent work we demonstrated how
appropriate camera calibration allows to rectify input
images and resolve this issue [1]. The second major
problem has to do with the limited dynamic range
of the camera sensors. Only a small range of illu-
mination intensities found in the real world can be
captured and represented using conventional 24-bit
RGB colors. Intensities outside this range result in
under- and overexposed pixels that convey no infor-
mation about the apparent color of the scene point.
Thus, the details in shadows and highlights are lost.

The problem of low dynamic range (LDR) of the
camera sensors is central for the photography com-
munity. Typically, it is addressed by selecting a shut-
ter time that allows to properly expose the areas of in-
terest in the scene. However, this fails when a scene
has a lot of inherent contrast (see Figure 1). To deal
with such situations the high dynamic range (HDR)
imaging method was developed [18]. It involves tak-
ing multiple LDR images at different exposure times,
making sure that all areas of the scene are properly
exposed in at least one image. Then the images are
converted into a linear color space and combined into
a radiance map of extended dynamic range.

Recently, two works were presented that imple-
ment a dense SLAM pipeline and recover scene col-
ors in HDR [11, 12]. Both rely on the automatic ex-
posure (AE) function of the camera to obtain differ-
ently exposed images of the scene. This has two im-
plications: exposure times have to be estimated at
per-frame basis, thus incurring computational effort
and drift in the long run. Further, AE is shortsighted
in that it has no global awareness and is designed to
optimize exposure time for the current frame. Con-
sequently, parts of the scene may remain always sat-
urated and thus without valid color.

In this paper we address the problem of captur-
ing and representing the colors in a scene in high
dynamic range. Equipped with a consumer-grade
RGB-D camera, we strive to obtain a 3D model with
accurate colors, without losing any detail in high-
lights and shadows. In contrast to the prior work, we
disable the built-in AE function and design our own
controller. The benefit is two-fold: exposure time
of every image is known and does not need to be
estimated. Secondly, we leverage the reconstructed
model to make educated decisions regarding which
exposure time should be used next to gain new color
information. To the best of our knowledge, this is
the first implementation of a custom exposure time

controller and the first work to extend a surfel-based
dense SLAM framework to handle colors in high dy-
namic range.

2. Preliminaries and related work

2.1. Radiometric image formation

Image formation is a complex process that in-
volves nonlinear transformations. Scene points emit
rays in the direction of the camera. The camera shut-
ter is opened for a certain period of time to allow the
light to pass through the lens system. The energy re-
ceived on the image plane is then converted into an
electrical signal and quantized into pixel intensities.

For a scene point x ∈ R3 the intensity of the corre-
sponding pixel u in the image space domain Ω ⊂ N2

is given by:

I(u) = f (tV (u)L(x)) , (1)

where f : R → {0, . . . , 255} is the radiometric re-
sponse function of the camera, t is the exposure time,
V : Ω → R is the optical response of the lens sys-
tem (vignetting), and L : R3 → R defines mapping
between scene points and their radiances.

The function f(·) maps energy received at a pixel
well into a quantized 8-bit intensity value. Due to the
limitations in the sensor technology, energies outside
a certain valid range are mapped to either minimum
(0) or maximum (255) intensity values. Such pixels
are said to be under- or overexposed and provide only
an upper or a lower bound of the received energy.

Vignetting response V (·) maps image locations to
attenuation factors. It is often assumed to be radially
symmetric and is modeled with a polynomial func-
tion [9]. However, recently it was demonstrated that
the vignetting response in consumer RGB-D cameras
is better modeled with a nonparametric per-pixel map
of attenuation factors [1].

Both radiometric and vignetting responses can be
precalibrated [1, 6]. Figure 2 shows recovered re-
sponses for the blue channel of an Asus Xtion Live
Pro camera. The responses in other color channels
are similar, but not identical.

2.2. HDR capture

The goal of HDR capture is to recover a radiance
image of a scene in its full dynamic range. Based
on (1), pixels in I can be converted into a radiance
image L:

L(u) =
f−1 (I(u))

tV (u)
. (2)



0.0 0.5 1.0

Irradiance

0

128

255

Pi
xe

li
nt

en
si

ty

0.45 0.60 0.75 0.90

Figure 2. Radiometric calibration of an Asus Xtion Live
Pro camera (blue color channel). Left: camera response
function, recovered up to an unknown scale factor. Right:
vignetting response as a map of pixel attenuation factors.

On its own, this conversion does not increase the dy-
namic range; the radiances of saturated pixels remain
unknown. However, it brings the values into a linear
space at absolute scale. Thus, this conversion allows
to combine this image with others taken at different
exposure times and having different effective range.

The basic procedure of HDR capture involves tak-
ing a set of LDR images {Ii} at n different exposure
times. These images are converted into radiance im-
ages {Li} and are combined using:

L̄ (u) =

∑n
i=1w (Ii (u))Li (u)∑n

i=1w (Ii (u))
, (3)

where w is a confidence weight that depends on the
pixel measurement. In the early work of Debevec and
Malic [5] a hat function was used. Later, Kirk and
Andersen [10] characterized noise properties of sev-
eral other weighting schemes. They concluded that
the variance-based weighting gives best lower bound
on signal-to-noise ratio. Hasinoff et al. [7] investi-
gated the problem of selecting exposure times and
gains for noise-optimal HDR capture.

Conventional HDR methods assume that each
pixel u represents the same scene point x across dif-
ferent images. Effectively, this means that both the
camera and the scene should be static. In more re-
cent works, attempts are made to relax this require-
ment and allow capturing without tripod [22], or to
tolerate moving objects in the scene [16].

2.3. HDR mapping

The ideas from the HDR imaging area were
applied in the context of 3D reconstruction with
RGB-D cameras. Zhang et al. [21] presented an of-
fline method to obtain globally optimal HDR tex-
tures for a reconstructed 3D model. They formulated
a nonlinear optimization problem, where per-image
exposures and point radiances are the unknowns.

Motivated by augmented reality applications, par-
ticularly insertion of reflective objects with shadows
into a video stream, Meilland et al. [12] proposed a
dense SLAM system that recovers HDR colors. They
represent the 3D scene model as a graph of super-
resolved HDR keyframes, each of which is a result
of fusion of a set of LDR images. Camera tracking
is performed through direct alignment with geomet-
ric and photometric error terms. The latter includes
relative exposure time, estimated jointly with camera
transform. They model the camera response with the
gamma function and ignore the vignetting effects.

Recently, Li et al. [11] described a different ap-
proach to mapping with HDR colors, where they ex-
tend a volumetric SLAM framework. In their for-
mulation exposure compensation is decoupled from
tracking. The alignment problem is cast in the nor-
malized radiance space that is independent of ex-
posure time. Once the new camera pose is esti-
mated, the exposure time change is determined as a
weighted average of radiance ratios between corre-
sponding pixels. Finally, the radiance map is scaled
using the estimated exposure time and is fused into
the global volumetric representation.

Our system is similar to the latter two in that it
performs online 3D reconstruction with HDR colors.
The difference lies in that we use a surfel-based rep-
resentation and control the exposure time of the cam-
era based on the current state of the map.

3. System overview

We employ an architecture typical for real-time
dense SLAM systems, where camera tracking is al-
ternated with mapping. The flow diagram is pre-
sented in Figure 3. Input color images I from an
RGB-D camera are radiometrically rectified to obtain
radiance maps L. Together with the depth maps they
are used to estimate the current camera pose within
the map. This is done through direct alignment with
the virtual radiance and depth maps predicted at the
previous pose of the camera. The rectified input data
is then fused into the existing model M using the es-
timated camera pose. Next we perform view predic-
tion of the updated model from the estimated camera
pose. Finally, the predicted saturation map S is used
by the exposure time controller to select the shutter
time for the next frame.

This pipeline is based on the work of Keller et
al. [8]. The main difference and contribution of this
paper consists in (a) extension of various pipeline
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Figure 3. Flow diagram of the proposed SLAM system.
Filled boxes represent pipeline processing stages, empty
boxes represent data structures, and arrows represent data
and control flow.

stages to deal with HDR colors and (b) introduction
of an exposure time controller in the loop. The next
two sections cover these topics.

4. Mapping with HDR colors

4.1. Preprocessing

The camera delivers noisy LDR images of the
scene. Before fusing them into the map, we perform
radiometric rectification using (2) to bring them into
a linear color space at the same scale as the map. The
camera response function and vignetting effects are
precalibrated [1], and the exposure time t is known
for every frame.

4.2. Map representation

The map is represented by a set of surfels M.
Each surfel has the following fields: position p ∈
R3, normal n ∈ R3, weight w ∈ R, radius r ∈ R,
timestamp t, and HDR color c ∈ N4.

The first element c1 of an HDR color stores a con-
fidence value. Positive confidence indicates that the
color is valid, i.e. the surfel was observed through
a non-saturated pixel at least once. In this case the
remaining three elements contain per-channel radi-
ances. Zero confidence indicates that the color is in-
valid, i.e. up to now the surfel was always observed
through under- or overexposed pixels. In this case
c2 and c3 store the longest and the shortest exposure
times at which the surfel was observed so far, and c4
is a binary flag indicating whether the observed pix-
els where under- or overexposed.

Each of the fields of an HDR color is stored in a
16-bit integer, requiring 64 bits in total. Note that e.g.
ElasticFusion implementation1 allocates 64 bits for
surfel color (although only 24 bits are used). There-
fore, the conversion to HDR can be achieved without
changing of the memory footprint.

4.3. Camera pose estimation

Camera pose update is estimated through direct
registration of the current input frame with rendered
view of the model as seen from the previous camera
pose. We minimize a joint cost function consisting of
geometric and photometric residuals, exactly as de-
scribed by Whelan et al. [20]. Note that in our case
the input images are radiometrically rectified and are
at scale with the map. Therefore, even though the
formulation is the same, our registration minimizes
error in the HDR space.

4.4. Data fusion

We perform projective association of the input
data with the existing surfels. The computed cor-
respondences are used to update positions, normals,
weights, radii, and timestamps of the surfels follow-
ing the rules described by Keller et al. [8]. We intro-
duce an additional rule to handle the fusion of colors.

Consider a pixel u which is associated with a sur-
felMs having color c. We distinguish between four
cases according to the validity of the colors being
fused. When both surfel color and input color are
invalid, we update the minimum and maximum ex-
posure times:

c2 ← min (c2, t) , c3 ← max (c3, t) . (4)

When the surfel color is invalid, and input color is
valid, the former is overwritten. When the surfel
color is valid, and the input color is invalid, noth-
ing is done. Finally, if both colors are valid, then a
per-channel weighted average is computed.

4.5. View prediction

After every map update the view of the modelM,
as seen from the current camera pose, is predicted.
We implemented an OpenGL pipeline with a sim-
ple surface splatting technique, where each surfel is
rendered as an opaque hexagon [17]. The fragment
shader is configured to output to multiple textures:
depth map D̂, radiance map L̂, and saturation map

1https://github.com/mp3guy/ElasticFusion

https://github.com/mp3guy/ElasticFusion


Figure 4. Left: predicted saturation map. Red pixels
correspond to the surfels with invalid overexposed colors,
blue pixels correspond to the surfels with invalid underex-
posed colors. Right: color image of the scene.

Ŝ. The latter two are induced by the surfel colors
according to the following rules.

For a valid color c the values stored in c1, c2, and
c3 are copied into the radiance map, and the satura-
tion is zero. Contrary, for an invalid color the radi-
ance is set to zero, whereas the saturation is given
by:

s(c) =

{
c2, if c4 = 0

−c3, otherwise.
(5)

For the surfels that have been always observed
through overexposed pixels, the saturation value will
be positive and equal to the shortest exposure time.
For the surfels that were always underexposed, the
value will be equal to the longest exposure time, with
a negative sign. An example of a predicted saturation
map is shown in Figure 4a. The saturation map is
used to control camera exposure time as detailed in
Section 5.

5. Exposure time control

Consumer RGB-D cameras often have built-in
AE function. The particular algorithm is vendor-
dependent, but generally it tries to adjust exposure
time to strike a balance between under- and overex-
posing the scene. Such control is adequate to achieve
as-good-as-possible exposure in a single image, how-
ever for the purposes of spatially extended 3D recon-
struction it is suboptimal.

Our system analyses the current state of the recon-
structed model and decides which exposure time will
yield most information gain in the next frame. For
this purpose we utilize the saturation map rendered
in the view prediction step.

The non-zero pixels of the saturation map corre-
spond to the model surfels that are visible from the
current camera pose, but do not have a valid color.
By properly adjusting exposure time we may obtain

valid color information for these surfels in subse-
quent frames. We use the following intuition to for-
mulate the control rules:

1. Exposure time should be varied smoothly to
avoid sudden massive changes in the image ap-
pearance;

2. Saturated pixels close to the center of the im-
age should have more influence because they
are more likely to stay in the field of view in
the subsequent frames;

3. Exposure controller should have hard limits on
the allowed exposure times, because too large
exposure times lead to high degree of motion
blur, which significantly deteriorates the quality
of the color models.

The consequence of the first rule is that the control
decision boils down to choosing whether to increase,
decrease, or keep the same exposure time. We apply
a function ω(·) to each pixel in the saturation map
and sum up the results. The sign of the sum indicates
whether to increase or decrease the exposure time.

The function ω(·) is defined as follows:

ω(s) = exp

(
1

d (s, t)

)
exp

(
−γ2

2σ2

)
, (6)

where d (·, ·) is the difference between saturation
value and current exposure time, γ is the normalized
radial distance of the pixel, and σ is a weighting fac-
tor. The first part gives more influence to pixels that
require less change in exposure time. The second
part gives more influence to the pixels close to the
center, as stipulated by the second rule.

6. Experimental evaluation

We performed a number of small-scale reconstruc-
tions with our system and the state-of-the-art LDR
system of Whelan et al. [20] to demonstrate the ben-
efits of using high dynamic range colors and the cus-
tom exposure controller.

In the first experiment we recorded an RGB-D se-
quence with fixed exposure time. Figure 5 demon-
strates a birds-eye view of LDR and HDR reconstruc-
tions. Our texture is more smooth and consistent, es-
pecially in bright (white paper) and dark (dark parts
of the table) texture regions.

In the second experiment we performed two scans
of an office table, one with fixed exposure time, and



Figure 5. Top: LDR reconstruction obtained using ElasticFusion [20] with disabled camera AE and fixed exposure time.
Bottom: HDR reconstruction obtained using our system from the same data sequence.

one with our exposure controller enabled. Figure 6
presents LDR reconstruction using the first sequence
and HDR reconstruction using the second sequence.
As before, HDR reconstruction has more smooth and
consistent textures. Furthermore, the dark objects in
the scene (keyboard and phone) have been properly
exposed and more details are preserved.

In the third experiment we performed two scans
of a washing machine, one with fixed exposure time,
and one with our exposure controller enabled. Both
sequences were used to produce HDR reconstruc-
tions with our system. Figure 4 presents the vi-
sual appearance of the reconstructions and the confi-
dence values associated with the surfels. Clearly, the



Figure 6. Top: LDR reconstruction obtained using ElasticFusion [20] with disabled camera AE and fixed exposure time.
Bottom: HDR reconstruction obtained using our system with the custom exposure controller enabled.



Figure 7. HDR reconstructions obtained using our sys-
tem, without (top row) and with (bottom row) the custom
exposure controller. Left column shows the visual appear-
ance of the reconstruction, right column shows the color
confidence of the surfels (color-coded, yellow means con-
fident, dark violet means invalid color).

darker areas in the bottom and the shelves were not
properly exposed in the sequence with fixed shutter
time. Conversely, in the second sequence the expo-
sure controller made sure that all parts of the scene
were properly exposed.

7. Conclusions and future work

In this contribution we presented a study of HDR
mapping with consumer RGB-D cameras. Exten-
sions to the standard surfel-based SLAM system
were described that lead to improved texture quality.

In our current implementation a number of design
decisions (such as exposure control rules) were made
without proper empirical evaluation. The challenge,
however, is to define suitable evaluation metrics.

It is interesting to evaluate the influence of im-
proved color model and error minimization in HDR
color space on the tracking performance.

Since our method is active, it is challenging to per-
form a fair comparison with ”passive” HDR systems
that use cameras’ built-in AE function. The same
RGB-D sequence can not be used, and it is almost
impossible to reproduce the same trajectory without
involved robotic setup. One solution would be use a
synthetic dataset, where multiple frames with differ-
ent exposure times may be rendered for each camera
pose in the trajectory.

Reconstruction with HDR colors is a relatively
new area, and there are no benchmark datasets. Engel
et al. [6] recently published a dataset for monocular
odometry with radiometrical calibration of the cam-
era. In a similar spirit, it may be useful to collect and
publish a RGB-D dataset with such calibration.
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